Modeling the Effect of Disruptions on the Absorber Treatment on Antenna Measurements


Author: Vince Rodriguez
Publication: AMTA 2025
Copyright Owner: NSI-MI Technologies

Anechoic ranges require constant temperature and humidity, proper lighting to be able to work inside the range and closed-circuit television (CCTV) cameras to monitor the system while the measurement is being done. In addition, anechoic chambers require fire detection and suppression. Traditionally these penetrations are minimized and placed in non-critical areas. But the true effect of them has not been fully investigated. In this paper, antenna measurements as simulated in an indoor far field range. The approach to model the measurement is like the one the author presented in [1] and [2]. Thus, a range antenna (or nearfield probe) and an antenna under test (AUT) are placed in free space and the AUT is rotated at discrete angles as it was done in [1]. Then a second model includes CCTV cameras, HVAC vents, light fixtures and both air sampling tubes and fire suppression nozzles and placed around. The simulation with these disruptions is repeated at the given discrete angles. The model does not include the absorber on the range. The model assumes a perfect absorber and the results of the simulated antenna measurement are compared to an ideal case with no disruptions. The results, while being approximations, provide a worst-case error for those disruptions of the RF-absorber layout. The results can be used to estimate the potential uncertainty on the measurement caused by the different systems that must be part of the anechoic enclosure. The technique is applied here to indoor far field measurements, and for near-field systems. Results show that for your typical roll over azimuth positioner, the effects of the penetrations on the ceiling are very small with differences in the -35 to -40 dB levels.

View the paper