Estimating the Monostatic RCS of Variable Ratio Pylons Using MoM with Localized Meshing


Authors: P. Mark Ingerson, Vince Rodriguez
Publication: AMTA 2024
Copyright Owner: NSI-MI Technologies

Larger low-observable targets are being mounted onto RCS pylons. In many cases not only Azimuth rotation of the target, but a degree of movement in elevation is desired. This requires in many cases a large number of positioning cables to run from the base of the pylon to the tip where the rotator is placed. At the same time the low-observable qualities of the target call for pylon ogives with higher ratios to minimize the background RCS of the pylon that supports the target. The higher ratios call for very thin structures that cannot handle the weight of the rotator or have not enough space for the control and power cable to be fed to the rotator. A way of solving this problem is to have a variable ratio pylon, where the ogive at the tip is different from the ogive on the main body of the pylon. To analyze these pylons a higher-order basis-function method of moments (HOBFMoM) approach has been used in the past [1]. To conform the quadrilateral flat patches to the round geometry of the pylon, patches smaller than 0.3λ were used. While this was still an advantage over the typical 0.1to 0.05λ patches it placed limits on the highest frequencies that could be analyzed give the available computational resources. In this paper the authors present an approach to the meshing of the structure that allows for computing the monostatic RCS at frequencies in the x-band for a 2.4 m tall pylon. In addition, the effects of the non-physical absorber terminations are further analyzed.

View the paper