2020 Technical Papers

Numerical Study of the RCS of Pyramidal Absorber Geometries

Authors: Vince Rodriguez, Zhong Chen
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

There have been a number of numerical analyses of RF absorber presented in the literature. These analyses however, tend to focus on the reflectivity of the material and not on the radar cross section (RCS) that it presents. Brumley studied the RCS of RF absorbers for the purpose of estimating the background RCS of anechoic ranges. The study was done empirically, obtaining measurements of the RF absorber and looking at the RCS of different pyramids and wedges, with and without paint. Brumley presents some potential methods to improving the RCS signature of the range, thus reducing the background RCS of the site.

In this paper, the suggestions presented by Brumley are revisited. Specifically, his recommendation for the twisted pyramid configuration which he was unable to measure due to the lack of absorber samples available for use in the test. In addition to the twisted pyramid, Brumley’s approach of inserting smaller pyramids in the valleys of a larger pyramidal arrangement to reduce the edges parallel to the incoming wave are also presented. Different carbon loadings are modeled for the inserted pyramids. One is the standard loading of the inserted pyramid, and the other is the same loading as the main larger pyramidal arrangement such that all the absorber on the wall has the same material properties. Numerical studies are performed using time domain techniques as well as frequency domain techniques. The model is validated by comparing the RCS of a flat square plate with the theoretical solution. The results validate the data and the suggestions presented in and present ways of improving some of the solutions by adjusting the material properties of the absorber.

View The Paper


1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100


Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500


Seattle, WA Finding your local time... 15 Days 2023.amta.org
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.