Reducing Phase-Measurement Errors due to RF-Source Band Breaks

Authors: John McKenna, Anh Le, Scott T. McBride
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

A signal source can introduce phase-measurement errors when its output crosses through internal frequency-band breaks. The source phase lock circuits in this band-break region sometimes report approximate phase lock before complete phase lock occurs. The result of this approximate phase lock is a minor error in the output frequency, which can lead to phasemeasurement errors at the system level. The magnitude of the phase errors depends on the amount of frequency offset and the difference in electrical lengths between the measurement system’s signal and phase-reference paths.

If this behavior were deterministic, then the resulting phase errors might be tolerable. Unfortunately, it was found that the final settling time (measured in many hundreds of milliseconds) was not consistent, depended in part on the two specific frequencies surrounding the band break, became more confused if a second sweep encountered the band break before the first break had settled, and of course changed behavior if the frequencies were sequenced in reverse order or measured one at a time.

The design approach described herein reduced to negligible the phase-measurement errors due to frequency errors in two large multioctave test systems. The approach relies on managing range transmission line lengths so that propagation time is sufficiently equal among the various signal and reference paths. Measured data are presented that show the advantage of the optimized system design.

View The Paper

Additive Manufactured 3:1 Bandwidth Dual-Polarized Range Antenna

Authors: Jeffrey Fordham, Edwin Barry, Ricky Burge, Michael Hollenbeck, Robert Smith
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

A family of 3:1 Dual-Polarized Antennas has been developed for use in near-field ranges as the probe or range antenna and for use as a Compact Antenna Test Range (CATR) feed. Key development parameters of the antenna are: a wideband impedance match to the coaxial feed line, E and H-plane 1 dB beam widths in excess of 30 degrees, -25 dB on axis cross-polarization, minimum polarization tilt and a phase center that varies over a small region near the aperture. To accomplish these design parameters, a family of range antennas has been developed and previously introduced. Two versions of the antenna have been manufactured and tested for performance. A 2-6 GHz version has been developed using traditional machining techniques and a 6-18 GHz version has been produced using additive manufacturing (3D printing) techniques.

In this paper, we focus on the performance of the 6-18 GHz antenna produced using additive manufacturing. The measured performance of the antenna will be presented and compared to previous simulation. The advantages of additive manufacturing for this type antenna will be discussed. Finally, the applicability of the antenna as a CATR feed and its use in near-field scanning will be discussed.

View The Paper

Automotive OTA Measurement Techniques and Challenges

Authors: Patrick Pelland, Daniël Janse van Rensburg, Mihai Berbeci, Fynn Ove Storjohann, Andreas Griesche, Jan-Peter Busch
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

Characterizing the performance of automobile-mounted antennas has been an ongoing and evolving challenge for the antenna measurement community. Today, the automotive test environment poses unique challenges with its diversity and complexity of wireless on-board systems and the large electrical size of the test article. The evolution of cellular technologies over the past decade means that the basic mobile handset has now become a smartphone with significantly increased capability; this exact same trend has been mirrored by the automotive industry where we have witnessed the basic car radio and cassette player evolve into a multi-function infotainment unit. Modern vehicles include a multitude of wireless technologies, including cellular (2G, 3G, LTE), Bluetooth, WiFi, Global Navigation Satellite System (GNSS), collision avoidance radar, and more. Testing the complete vehicle is currently the only method available that certifies the correct mode of operation for each technology (including co-existence and interference) and also assures the manufacturer that the various sub-systems are performing as expected in the presence of all other sub-systems and the vehicle itself.

While modern vehicles now function like large mobile devices, the conventional Over-the-Air (OTA) measurement systems and techniques available for small form factor devices (e.g. mobile phones) are ill-suited to testing such large devices. In this paper, we will highlight some of the unique challenges encountered in the automotive test environment. We will start by looking into existing methods of measuring radiation patterns of automobile-mounted antennas and providing a qualitative assessment of the various techniques with a focus on near-field solutions. A brief description of OTA testing will follow, coupled with an in-depth look into how techniques that are proven for handset type OTA measurements are being translated to automotive measurements. This section will provide a breakdown of key OTA test metrics, the measurement hardware typically required and key assumptions about the device under test. Finally, some performance tradeoffs and challenges associated with designing a multi-purpose antenna/OTA measurement system will be described.

View The Paper

Challenges for the Automotive Industry on MIMO OTA Testing

Authors: Mihai Berbeci, Patrick Pelland, Thomas Leifert
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

The evolution of cellular communication technologies has been replicated by the automotive industry with modern vehicles being almost universally fitted, as a bare minimum, with a radio system, a cellular communication system and Bluetooth capability. Higher end vehicles have additional capabilities such as WiFi, GNSS, TPMS, smart keyless entry and smart start/stop feature. All these systems are highly integrated as part of the vehicle’s infotainment unit and they must operate satisfactorily in a co-existing manner.

Automotive wireless testing is currently facing several challenging aspects with one such aspect being MIMO OTA (Multiple-Input-Multiple-Output Over-the-Air) testing of the terrestrial cellular communication system of the vehicle. In this paper, we will examine the current approach for MIMO OTA testing in the 4G and 5G cellular environments and discuss various scenarios on how existing techniques can be adapted to support MIMO OTA testing in the automotive industry.

View The Paper

Definition, Implementation, and Evaluation of a Novel Spiral-Sampling Technique

Authors: Vivek H. Sanandiya, Scott T. McBride
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

Building on the theory of spiral near-field acquisitions, the authors present a novel spiral acquisition implemented in a spherical near-field (SNF) chamber for a large automotive application. This new spiral permits the relaxation of certain restrictions associated with the standard spiral. Specifically, it allows us to eliminate extra or redundant rings beyond the poles, allows for greater control of the angular velocity ratio (i.e. gear ratio) between the theta and phi physical positioning axes, and does not require that the theta axis retrace between acquisitions.

In this paper, we describe the new spiral’s motivations, implementation, advantages, and measurement results. We first discuss the new spiral sampling, its mathematical definition, and its comparison to a standard spiral. Next, we describe the practical considerations and implementation of the coordinated motion between theta and phi for spiral sampling over a spherical surface. Next, we present the results showing good pattern agreement between conventional SNF and the new spiral method. We also discuss the reductions in near-field acquisition time and total test time that were achieved using the new spiral.

View The Paper

Numerical Analysis of Techniques to Improve Oblique Incidence of Absorber

Author: Vince Rodriguez
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

Financial impacts often drive decisions to repurpose existing ranges instead of procuring new measurement facilities. These existing ranges have fixed geometries (height, width and length) that were set when the range was originally constructed and often are designed for a different purpose. The inability to set the geometry precludes the range designer from using the range geometry to improve measurement performance. Thus, the performance of the range is mostly dependent on the Radio Frequency (RF) absorber and the range antenna directivity. In rectangular-shaped ranges for example, the lateral surfaces, side walls, ceiling and floor, are the critical surfaces to address in RF absorber arrangement.

In this paper, numerical analyses of Chebyshev arrangements as well as dragon tail or tilted absorber are studied. This paper also analyzes the performance of Chebyshev absorber for normal incidence and for oblique incidence along with the proper arrangement of the Chebyshev period. While certainly these have been discussed previously in the literature, this paper consolidates the previous information and illustrates it with numerical examples to help the reader understand the best approach to use when repurposing a range.

View The Paper

Numerical Study of the RCS of Pyramidal Absorber Geometries

Authors: Vince Rodriguez, Zhong Chen
Publication: AMTA 2020
Copyright Owner: NSI-MI Technologies

There have been a number of numerical analyses of RF absorber presented in the literature. These analyses however, tend to focus on the reflectivity of the material and not on the radar cross section (RCS) that it presents. Brumley studied the RCS of RF absorbers for the purpose of estimating the background RCS of anechoic ranges. The study was done empirically, obtaining measurements of the RF absorber and looking at the RCS of different pyramids and wedges, with and without paint. Brumley presents some potential methods to improving the RCS signature of the range, thus reducing the background RCS of the site.

In this paper, the suggestions presented by Brumley are revisited. Specifically, his recommendation for the twisted pyramid configuration which he was unable to measure due to the lack of absorber samples available for use in the test. In addition to the twisted pyramid, Brumley’s approach of inserting smaller pyramids in the valleys of a larger pyramidal arrangement to reduce the edges parallel to the incoming wave are also presented. Different carbon loadings are modeled for the inserted pyramids. One is the standard loading of the inserted pyramid, and the other is the same loading as the main larger pyramidal arrangement such that all the absorber on the wall has the same material properties. Numerical studies are performed using time domain techniques as well as frequency domain techniques. The model is validated by comparing the RCS of a flat square plate with the theoretical solution. The results validate the data and the suggestions presented in and present ways of improving some of the solutions by adjusting the material properties of the absorber.

View The Paper
  • 1
  • 2

Atlanta

1125 Satellite Blvd., Suite 100
Suwanee, GA 30024-4629 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Drive
Torrance, CA 90502-1104 USA

+1 310 525 7000
+1 310 525 7100

NSI-MI UK

Unit 51 Harley Road
Sheffield, S11 9SE UK

+44 7493 235224
  www.nsi-mi.co.uk

ISAP2020

Virtual Conference Finding your local time... 51 Days www.isap2020.org
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.