CATR Quiet Zone Depth Variation

Authors: Marion Baggett and Brett T. Walkenhorst
Publication: AMTA 2019
Copyright Owner: NSI-MI Technologies

The traditional characterization of the quiet zone for a CATR is to perform field probe scans perpendicular to the range axis at one or more depths of the quiet zone, usually front, middle and back. There is usually no attempt to compare the peak signals across the field probe scans. In recent years, users of CATRs have been using these devices at lower and lower frequencies, sometimes below the lowest frequency that provides the specified performance for the CATR. It is recognized that as a CATR is used at lower and lower frequencies compared to its optics, the quiet zone quality will degrade. The purpose of this study was to create a quiet zone depth variation model to characterize the variation, particularly for low frequencies. The model was to treat the CATR as an antenna aperture and apply a power density versus distance model. It is well known that the extreme near field of an aperture is oscillatory at distances up to approximately 10% of the far-field distance, at which point the power density begins to follow the Fraunhofer approximation. The optics of a CATR place the quiet zone well within the oscillatory zone, indicating that the field will vary through the depth of the quiet zone. This variation will decrease with increasing frequency as the far-field distance for the CATR increases with frequency. The model has been compared to a simulation in GRASP and experimental data collected on a CATR.

View The Paper

Atlanta

1125 Satellite Blvd., Suite 100
Suwanee, GA 30024-4629 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Drive
Torrance, CA 90502-1104 USA

+1 310 525 7000
+1 310 525 7100

NSI-MI UK

Unit 51 Harley Road
Sheffield, S11 9SE UK

+44 7493 235224
  www.nsi-mi.co.uk

Short Course

Torrance, CA Finding your local time... 42 Days

Latest Tweets

This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.