2017 Technical Papers

On the Disadvantages of Tilting the Receive End-Wall of a Compact Range for RCS Measurements

Author: Vince Rodriguez
Publication: AMTA 2017
Copyright Owner: NSI-MI Technologies

Tilting the receive end wall of a compact range anechoic chamber to improve Radar Cross-Section (RCS) measurements has been a tool of the trade used since the earliest days of anechoic chambers. A preliminary analysis using geometrical optics (GO) validates this technique. The GO approach however ignores the backscattering modes from the reflected waves from a field of absorber. In this paper, a series of numerical experiments are performed comparing a straight wall and a tilted wall to show the effects on both the quiet zone and the energy reflected back towards the source antenna. Two Absorber covered walls are simulated. Both walls are illuminated with a standard gain horn (SGH). The effects of a wall tilted back 20° are computed. The simulations are done for 72-inch long absorber for the frequency range covering from 500 MHz to 1 GHz. The ripple on a 10 ft (3.05 m) quiet zone (QZ) is measured for the vertical wall and the tilted wall. In addition to the QZ analysis a time-domain analysis is performed. The reflected pulse at the excitation antenna is compared for the two back wall configurations Results show that tilting the wall improves measurements at some frequencies but causes a higher return at other frequencies; indicating this method does not provide a broadband advantage.

Atlanta

1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100

NSI-MI UK

C/O AMETEK LAND,
Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500

Space-Comm Expo

Farnborough, UK Finding your local time... www.space-comm.co.uk
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.