Quiet Zone Qualification of a Very Large, Wideband Rolled-Edge Reflector

Authors: Anil Tellakula, William R. Griffin, and Scott T. McBride
Publication: AMTA 2016
Publication date: October 31, 2016
Copyright Owner: NSI-MI Technologies

Installing a large compact range reflector and electromagnetically qualifying the quiet zone is a major undertaking, especially for very large panelized reflectors. The approach taken to design the required rolled-edge reflector geometry for achieving a 5 meter quiet zone across a frequency range of 350 MHz to 40 GHz was previously presented [1]. The segmentation scheme, fabrication methodology, and intermediate qualification of panels using an NSI-MI developed microwave holography tool were also presented. This reflector has since been installed and the compact range qualified by direct measurement of the electromagnetic fields in the quiet zone using a large field probe.

This paper presents the comparison and correlation between the holography predictions and the field probe measurements of the quiet zone. Installation and alignment techniques used for the multiple panel reflector are presented. Available metrology tools have inherent accuracy limitations leading to residual misalignment between the panels. NSI-MI has overcome this limitation by using its holography tool along with existing metrology techniques to predict the field quality in the quiet zone based on surface measurements of the panels. The tool was used to establish go/no-go criteria for panel alignment accuracy achieved on site. Correlation of the holography predictions with actual field probe measurements of the installed reflector validates the application of the holography tool for performance prediction of large, multiple-panel, rolled-edge reflectors.

Atlanta

1125 Satellite Blvd., Suite 100
Suwanee, GA 30024-4629 USA

+1 678 475 8300
+1 678 542 2601
sales@nsi-mi.com

Los Angeles

19730 Magellan Drive
Torrance, CA 90502-1104 USA

+1 310 525 7000
+1 310 525 7100
sales@nsi-mi.com

ISAP 2018

Busan, Korea   7 Days

Latest Tweets

This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.
   OK