2016 Technical Papers

Implementation of a Combination Planar and Spherical Near-Field Antenna Measurement System using an Industrial 6-Axis Robot

Authors: John Hatzis, Patrick Pelland, Greg Hindman
Publication: AMTA 2016
Copyright Owner: NSI-MI Technologies

Near-field antenna test systems are typically designed to optimize measurement results for a specific type of antenna. The measurement system is selected and sized based on the antenna aperture dimensions, directivity, weight and operating frequency, among other parameters. These factors are used to select either a planar, cylindrical, or spherical near-field test system for the given antenna test requirements. Antennas with different characteristics may not be compatible with the selected range and often require costly upgrades to the existing range or a different range altogether. One solution to test a wide variety of antenna types is a combination planar-cylindrical-spherical (PCS) test system. These systems usually require some level of facility re-configuration and present drawbacks when switching between the various modes of operation.

The adaptation of a six-axis robotic test system is an attractive solution in these situations, as the system’s flexibility allows for rapid reconfiguration that is inherent to the system. This allows the user to select the optimal test solution for the antenna under test with little effort. This paper presents the performance of a six-axis robotic near-field measurement system showing nearfield modes of operation and the system’s performance in antenna measurements when compared to a traditional spherical near-field range.


1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100


Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500


Seattle, WA Finding your local time... 9 Days 2023.amta.org
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.