2016 Technical Papers

Thermoelastic Analysis of a Carbon-Fiber Compact Antenna Test Range Reflector

Authors: J. Hatzis, S.F. Gregson, C.G. Parini
Publication: EuCAP 2016
Copyright Owner: IEEE

Compact antenna test ranges (CATR) are attractive solutions for far-field measurements in a confined space with the single-offset reflector being the most common variation of deployed CATRs. Reflectors in these ranges emit a collimated plane-wave to simulate the far-field condition. This requires that each CATR must be properly focused and undergo careful alignment and validation, as any misalignment would perturb the plane wave. CATRs are normally designed to operate in environments with tight temperature control, however this is frequently impractical to implement in normal test environments. A carbon-fiber CATR reflector designed to be insensitive to temperature fluctuations can be an effective means to prevent thermally-induced deformation, and thus a corruption of the plane wave. This paper will illustrate the performance of this reflector over across a range of temperatures, and use a computational electromagnetic simulation to predict the impact on antenna measurements when the reflector is subjected to different temperatures.

You have requested a Reprint of an IEEE Paper

Copyright 2016 IEEE. Reprinted from EuCAP 2016 Conference.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of NSI-MI Technologies' products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it


1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100


Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500


Seattle, WA Finding your local time... 16 Days 2023.amta.org
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.