2012 Technical Papers

Precision Motion in Highly Accurate Mechanical Positioning

Author: Tim Schwartz, Eric Kim
Publication: AMTA 2012
Copyright Owner: NSI-MI Technologies

Numerous applications for antenna, radome and RCS measurements require a very accurate positioning capability to properly characterize the product being tested. Testing of weapons (missiles), guidance systems, and satellites, among other applications, require multi-axis position accuracies of a few thousandths of an inch or degree. For global positioning, spherical error volumes can be extremely small having diameters of .002 inches to .005 inches. This paper addresses the issues that must be resolved when highly accurate mechanical positioning is required. Many factors such as thermal stability, axis configuration, bearing runout and mechanical alignment can adversely affect the overall system accuracy. Additionally, when examined from a global positioning system perspective, the accuracy of the entire system is further degraded as the number of axes increases. Successful system implementation requires carefully examining and addressing the most dominant error factors. The paper will cover current tools and techniques available to characterize and correct the contributing errors in order to achieve the highest possible system level accuracy. A recently delivered 4 ft radius SNF arch scanner, which achieved ± .0043° global positioning accuracy, will provide insight into these methods and show how the dominant factors were addressed.


1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100


Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500

Space-Comm Expo

Farnborough, UK Finding your local time... 9 Days www.space-comm.co.uk
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.