An Innovative Technique for Positioner Error Correction
Authors: Roger Dygert, Mark Hudgens, Steven R. Nichols
Publication: AMTA 2012
Copyright Owner: NSI-MI Technologies
Antenna measurement systems employ mechanical positioners to spatially orient antennas, vehicles, and a variety of other test articles. These mechanical devices exhibit native positioning accuracy in varying degrees based on their design and position feedback technology. Even the most precise positioning systems have insufficient native accuracy for some specific applications.
As the limits of economical positioning accuracy are approached, a new error correction technique developed by MI Technologies satisfies these higher accuracy requirements without resorting to extreme measures in positioner design. The new technique allows real-time correction of repeatable positioning errors. This is accomplished by (1) performing a finely grained measurement of positioner accuracy, (2) creating a map of the errors in both spatial and spatial frequency domains, (3) separating the errors into their various components, and (4) applying correction filters to algorithmically perform error correction within the positioner control system.
The technique may be used to achieve extreme positioning accuracy with positioners of high native accuracy. It may also be applied to conventional (synchro feedback) positioners to achieve impressive results with no modifications at all to the positioner. The following paper discusses the new error correction technique in detail.