Scattering Reduction In Spherical Near-Field Measurements
Authors: Allen C. Newell, Greg Hindman
Publication: The International Union of Radio Science (URSI)
Copyright Owner: IEEE
Reflections in antenna test ranges can often be the largest source of measurement errors. This paper will show the results of a new technique developed by NSI to reduce scattering from the walls or other objects in the measurement chamber. The technique, named Mathematical Absorber Reflection Suppression (MARS), is a post-processing technique that involves analysis of the measured data and a filtering process to suppress the undesirable scattered signals. The technique is a general technique that can be applied to any spherical near-field test range. It has also been applied to extend the useful frequency range of microwave absorber in an anechoic chamber. The paper will show typical improvements in pattern performance and directivity measurements, and will show validation of the MARS technique by comparing results between a high quality anechoic chamber and a range with limited or no absorber.
You have requested a Reprint of an IEEE Paper
Copyright 2008 IEEE. Reprinted from 2008 IEEE AP-S/URSI Symposium.
This material is posted here with permission of the IEEE. Such permission
of the IEEE does not in any way imply IEEE endorsement of any of NSI-MI Technologies' products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.