An Efficient and Highly Accurate Technique for Periodic Planar Scanner Calibration with the Antenna Under Test in Situ
Authors:Scott Pierce, Marion Baggett
Publication: AMTA 2004
Copyright Owner: NSI-MI Technologies
This paper describes the development, testing and evaluation of a new, automated system for calibration and AUT alignment of a planar near-field scanner that allows the calibration system to remain in place during AUT measurement and which can be used to support AUT alignment to the scan plane. During scanner calibration, probe aperture position measurements are made using a tracking laser interferometer, a fixture that positions the interferometer retro reflector at a precise location relative to the probe aperture and a probe roll axis that maintains the proper orientation between the retro reflector and the interferometer as the probe position is moved. Aperture scan path information is used to construct a best-fit scan plane and to define a Cartesian, scanner-based coordinate system. Scan path data is then used to build a probe position error map for each of the three Cartesian coordinates as a function of the nominal position in the scan plane. These error maps can be used to implement software-based corrections (K-corrections) or they may be used for active Z-axis correction during measurements. By using a set of tooling points on the antenna mount, an AUT coordinate system is measured with the interferometer. The system then directs an operator through a set of AUT adjustments that align the AUT with the planar near-field scanner to a desired accuracy. This paper describes the implementation and testing of the system on an actual planar scanner and AUT test environment, showing the improvement in effective scanner planarity.