2002 Technical Papers

Correcting Dual Port Probes Port-To-Port Calibration Using Near-Field Measurements

Authors: Allen C. Newell, Jeff Way
Publication: AMTA 2002
Copyright Owner: NSI-MI Technologies

When a dual port probe is used for near-field measurements, the amplitude and phase difference between the two ports must be measured and applied to the probe correction files so that the measurements and calculations will have the same reference. For dual port linear probes, the measurement of this “Port-to-Port” ratio is usually accomplished during the gain or pattern measurements by using a rotating linear source antenna.

When a dual port linear probe is used to measure a circularly polarized antenna, the uncertainty in this Port-to-Port ratio can have a significant effect on the determination of the cross polarized pattern. Uncertainties of tenths of a dB in amplitude or 1-3 degrees phase can cause changes in the cross polarized pattern of 5-10 dB.2 3 The paper will present a method for measuring the Port-to-Port ratio on the near-field range using a circularly polarized antenna as the AUT (Antenna Under Test). The AUT does not need to be perfectly polarized nor do we need to know its correct polarization. The measurements consist of two separate near-field scans. In the first measurement the probe is in its normal position and in the second it is rotated about the Z-axis by 90 degrees. A script then calculates the Port-to-Port ratio by comparing the cross-polarization results from the two measurements. Uncertainties in the Port-to-Port ratio can be reduced to hundredths of a dB in amplitude and tenths of a degree in phase. Measurements were taken at TRW’s Large Horizontal Near-field Antenna Test Range.

 

Atlanta

1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100

NSI-MI UK

C/O AMETEK LAND,
Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500

Space-Comm Expo

Farnborough, UK Finding your local time... 9 Days www.space-comm.co.uk
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.