A Simple Analysis of Near-Field Boresight Error Requirements

Author: Doren W. Hess
Publication: AMTA 2001
Copyright Owner: NSI-MI Technologies

The need to measure the boresight pointing direction of radar antennas to a high degree of accuracy yields a requirement for excellent positioning accuracy on near-field antenna ranges. Evaluation of this requirement can be accomplished by a full and complete sensitivity analysis.

Alternatively, to gain an understanding of the effects of errors more simply, one can approach the question of accuracy required in the setup, by use of a physical model and straightforward physical reasoning. The approach starts with the assumptions of a collimated wave with planar phase fronts and the premise that the boresight direction of such a sum beam is along the normal to the phase fronts. A sensitivity analysis of the simple trigonometric boresight relationship between mechanical boresight and phase front normal, shows how accurate the receiver and the positioner must be to achieve a given boresight determination. Such an approach has been known for many years as it regards planar scanning; and, the results are known to be applicable.

In this paper this consideration is extended to spherical scanners to arrive at estimates of the mechanical positioner accuracies and electrical receiver accuracies needed to make boresight measurements of radar antennas with spherical near-field ranges.

 

Atlanta

1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100

NSI-MI UK

Unit 51 Harley Rd.
Sheffield, S11 9SE UK

+44 7493 235224
  www.nsi-mi.co.uk

AMTA 2021

Daytona Beach, FL Finding your local time... 84 Days 2021.amta.org

Latest Tweets

This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.