A Simple Analysis of Near-Field Boresight Error Requirements
Author: Doren W. Hess
Publication: AMTA 2001
Copyright Owner: NSI-MI Technologies
The need to measure the boresight pointing direction of radar antennas to a high degree of accuracy yields a requirement for excellent positioning accuracy on near-field antenna ranges. Evaluation of this requirement can be accomplished by a full and complete sensitivity analysis.
Alternatively, to gain an understanding of the effects of errors more simply, one can approach the question of accuracy required in the setup, by use of a physical model and straightforward physical reasoning. The approach starts with the assumptions of a collimated wave with planar phase fronts and the premise that the boresight direction of such a sum beam is along the normal to the phase fronts. A sensitivity analysis of the simple trigonometric boresight relationship between mechanical boresight and phase front normal, shows how accurate the receiver and the positioner must be to achieve a given boresight determination. Such an approach has been known for many years as it regards planar scanning; and, the results are known to be applicable.
In this paper this consideration is extended to spherical scanners to arrive at estimates of the mechanical positioner accuracies and electrical receiver accuracies needed to make boresight measurements of radar antennas with spherical near-field ranges.