1999 Technical Papers

Digital Receiver Technology for High-Speed Near-field Antenna Measurements

Authors: David S. Fooshe, Dan Slater
Publication: AMTA 1999
Copyright Owner: NSI-MI Technologies

High-speed receivers for near-field antenna and RCS measurements have traditionally been one-of-a-kind, expensive, difficult to interface and lacking in software support. Advances in digital signal processing, computer technology and software development now provide the means to economically solve these problems. NSI offers a high speed receiver subsystem, the Panther 6000 series, that allows multiplexed beam and frequency measurements at a rate of 80,000 independent amplitude and phase measurement points per second. The Panther 6000 receiver directly digitizes the 20 MHz IF test and reference input channels, and includes a high speed beam controller (HSBC) to sequence the measurement process. The HSBC receives an input trigger to initiate a measurement sequence of user-defined frequencies and beam or pol states.

NSI also offers a multi-channel all-digital receiver subsystem, the Panther 6500, to interface directly with Digital Beam Forming (DBF) antennas. The Panther 6500 allows up to 16 channels of I and Q digital input (16 bits each) with 90 dB dynamic range per channel. The alldigital DBF receiver reduces the cost, complexity and performance limitations associated with conventional instrumentation in DBF antenna measurement applications.

All Panther series receivers are fully integrated with the NSI97 antenna measurement software and operate with existing microwave sources, mixers and IF distribution equipment.



1125 Satellite Blvd. NW,
Ste. 100
Suwanee, GA 30024 USA

+1 678 475 8300
+1 678 542 2601

Los Angeles

19730 Magellan Dr.
Torrance, CA 90502 USA

+1 310 525 7000
+1 310 525 7100


Stubley Lane,
Dronfield, S18 1DJ UK

+44 1246 581500

Space-Comm Expo

Farnborough, UK Finding your local time... 9 Days www.space-comm.co.uk
This site is using cookies for analytical purposes and to provide a better user experience. Read our Privacy Policy for more information.