High Accuracy Cross-Polarization Measurements using a Single Reflector Compact Range
Authors: Christopher A. Rose, James H. Cook, Jr.
Publication: AMTA 1999
Copyright Owner: NSI-MI Technologies
MI Technologies has developed a technique to achieve very high accuracy cross-polarization measurements using a single reflector compact range. The technique, known as the "Error Correction Code Algorithm" (ECCA) leverages the "ideal" performance of a single parabolic reflector when the feed axis is aligned to the parabola axis. ECCA mathematically corrects for the amplitude taper induced by the feed axis alignment.
Historically, ‘conventional’ compact range polarization purity has been limited to »-30 dBi. The ECCA technique, however, lowers the cross-polarization error to »-48 dBi. This performance has been verified in two separate inter-range measurement comparisons with the National Institute of Standards and Technology. The results of these tests prove ECCA is an extremely accurate technique for low cross-polarization measurements and provides a lower cost, superior performance alternative to dualreflector systems when low cross-polarization measurements are required.