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Abstract � The topic of non-redundant near-field sampling has 
received much attention in recent literature. However, a 
practical implementation has so far been elusive. This paper 
describes a first step toward such a practical implementation, 
where the practicality and generality are maximized at the 
expense of more acquired data points. 

Building on the theoretical work of faculty at the University 
of Salerno and University of Naples [1]-[17], the authors have 
acquired a set of near-field data using a spiral locus of sample 
points and, from those data, obtained the far-field patterns. In 
this paper, we discuss the acquisition system, the calculation and 
practical implementation of the spiral, the phase 
transformations, interpolations, and far-field transforms. We 
also present the resultant far-field patterns and compare them 
to patterns of the same antenna obtained using conventional 
near-field scanning. Qualitative results involving aperture back-
projection are also given. We summarize our findings with a 
discussion of error, uncertainty, acquisition time, and 
processing time in this simplified approach to non-redundant 
sampling in a practical system. 
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I.�INTRODUCTION 

The theory of non-redundant sampling was introduced in 
1987 [1] with the development of a general theory describing 
limits on the spatial bandwidth of a signal emanating from a 
generic geometric boundary. Since that initial publication, 
dozens of papers have been produced (see, for example [1]-
[17]) to refine, extend, and formulate the non-redundant 
sampling criteria for various geometries and test scenarios. 
Papers on the general theory include [1]-[4]. Papers solving 
for the planar near-field case include [5]-[8]; for cylindrical, 
see [9]-[10]; and for spherical, see [11]-[12]. Solutions have 
involved various AUT (antenna under test) bounding surfaces 
including oblate spheroids, prolate spheroids, and a more 
��������� 	
���� ������ �� �double bowl� (see, for example, 
[13]), a convex surface composed of two half-ovoids. Many 
of the previous papers include measured results; however, in 
seeking to minimize the number of sample points, these 
acquisitions do not necessarily focus on the details of 
implementation that allow a user to minimize the acquisition 
time. Thus, although the theory has been in the public domain 
for about 30 years, practical implementations of the theory 
have not yet emerged. 

It is beyond the scope of this paper to describe the theory 
of non-redundant sampling in detail; however, we will offer 
a brief explanation here to help illustrate some of the practical 

issues with implementing the theory in a real measurement 
system. 

The non-redundant theory seeks to minimize the number 
of near-field sample points required to enable accurate 
reconstruction of the far-field pattern. It does so by using the 
	
��������
������	����������	��������������� parameters 
associated with a curvilinear coordinate system of which the 
����	� ��������� 	������ �	� ���� ��� �
�� ���������� ���	��
Although not essential to the basic theory, all of the derivative 
works assume this bounding surface is rotationally 
symmetric, so we can simplify the curvilinear coordinate 
system to a two-dimensional space mapped from a two-
dimensional vertical slice of the Cartesian space passing 
through the origin. 

The two axes of this simplified curvilinear space contain 
an angular axis (�) and a radial axis (�). For the case where 
the AUT bounding surface is an oblate spheroid, the values 
of these two parameters for a given sample point � are given 
by [4] 

���� � �	 
����� � ����
 ��	 ���� � (1) 

���� � �� ��� �� � ��� � �� � 
 ������ � � � ���� � � 	 ���!"� (2) 

where � is the wavenumber, � � �#� � #��$	%, � � �#� &#��$	�, #� � '� � %()*', #� � '� & %()*', % is the focal 
length of the spheroid, � is its semi-major axis, � � %$� the 
eccentricity, and 
�+ � +� is the incomplete elliptic integral of 
the second kind. 

The angular axis (�) allows us to define the ideal sample 
spacing along a hypothetical meridian curve surrounding the 
AUT. These points can then be mapped to the observation 
surface to define the locus of near-field sample points to be 
acquired. The radial axis (�) is used in the reconstruction, 
which will be described below. 

After samples have been acquired, the theory suggests 
using interpolation to reconstruct samples on a regular grid. 
Before interpolating, the value of the radial axis at each 
sample point is used to modulate the phase of the acquired 
data samples. This has the effect of minimizing phase 
transitions between sample points with large spacing, 
enabling us to accurately interpolate between those points. 
An interpolation method dubbed optimal sampling 
interpolation (OSI) is used for that purpose [3]. Once the 
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regular near-field grid has been reconstructed, the phase 
modulation is removed and a standard near-field to far-field 
transform is applied. 

One of the possible patterns of near-field points to be 
acquired is that of a spiral [14]-[17]. In a spherical near-field 
(SNF) acquisition, the spiral might look something like that 
shown in Figure 1. The blue dots show the spiral from pole to 
pole while red dots indicate extra rings around the poles 
required to enable OSI to interpolate properly near the poles. 
The gray surface in the center of the figure is the oblate 
spheroidal AUT bounding surface. 

 
Figure 1. A possible spiral locus of near-field positions. 

When implementing a spiral such as this in a SNF 
configuration, the ,- and -- axes must move synchronously. 
Because the pitch of the spiral is not constant, the relationship 
between the two axes of motion is constantly changing. In a 
case where the number of rings in the spiral is very large, the 
�������� ������ �������� �
�� ���� ���	�� ��������	� �	� �������
leading to very slow motion in one of the axes, potentially at 
the point of the quantization level of the digital control of the 
axis. 

In addition, as the spiral comes close to one of the poles, 
the optimal spacing between points becomes much smaller, 
leading to a reduced velocity in the - axis. In order to 
interpolate across the pole using OSI, additional rings must 
be acquired leading, in some measurement systems, to a 
discontinuity in the velocity profiles. Both of these 
considerations lead to a velocity and acceleration profile on 
the axes of motion that can be challenging to achieve in a 
practical measurement system. 

All of the above considerations create challenges for 
implementing the spiral in continuous motion. In this paper, 
we propose a simple acquisition as a first-step demonstration 
of a practical implementation of the non-redundant sampling 

theory. For this paper, we will accept the complication 
associated with a large gear ratio and the associated slow 
motion in one of the two axes. But the other complications 
will be addressed as follows. 

To obviate the issues with non-constant velocity ratio 
between axes, we will assume the AUT has a spherical 
bounding surface. This will lead to a spiral with a constant 
pitch, allowing us to maintain a fixed gear ratio between our 
positioning axes. 

To avoid the complications associated with increased - 
spacing near the poles, we will acquire data at regular 
intervals of - as dictated by standard near-field theory. In a 
scenario where we are limited by the speed of the positioner, 
�
�	�	�����	�������������������increase the acquisition time 
relative to a more optimal spacing in -. But in a case where 
we are limited by the speed of the instrumentation (i.e. signal 
source, measurement receiver, etc), the acquisition time could 
be improved by sampling more sparsely along the spiral. This 
simplification has the added advantage of eliminating one of 
two interpolation steps in post-processing. 

These simplifying assumptions allow for easier 
implementation, but dramatically reduce the advantage of the 
non-redundant sampling theory. The spherical AUT 
assumption removes the advantage of the theory in , while 
the constant - spacing removes the advantage of the theory 
in -. The time it takes to acquire the data, therefore, will 
likely not be much better than collecting data with the 
standard grid. However, simply acquiring data in a spiral 
eliminates the time to step between scan lines and any 
overhead associated with that operation. Unfortunately, the 
OSI algorithm requires additional rings beyond the poles, 
which will require more acquisition time. 

Thus, the results of this paper should be seen as a first step 
toward a practical implementation of non-redundant 
sampling, not as a final solution to the problem. The value 
here is in working through the process of defining near-field 
sample positions, implementing the acquisition of those data, 
and reconstructing the far-field. 

In Section II, we describe the measurement system, the 
AUT, and the chamber, and illustrate the sampling 
methodology. In Section III, we describe the data processing 
followed by results of far-field patterns in Section IV. In 
Section V, we conclude the paper and discuss future work to 
create more flexible and robust implementations of non-
redundant sampling theory. 

II.�MEASUREMENT DESCRIPTION 

In this section, we describe the AUT, the measurement 
system, chamber, and acquisition method. 

A. Measurement Setup 

An X-band circular slotted waveguide array was chosen 
as the antenna under test (AUT), shown in Figure 2 below. 
Two of the slots are covered with copper tape allowing us to 
qualitatively assess the ability of aperture diagnostic tools to 
accurately depict the associated nulls in the aperture 
illumination function. 
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Figure 2. X-band slotted waveguide array used as AUT. 

Measurements were made in the NSI-MI Technologies 
spherical near-field (SNF) chamber in Suwanee, GA. The 
AUT was mounted on a roll over azimuth positioner while an 
open-ended waveguide (OEWG) probe was mounted on the 
opposite side of the chamber on a roll positioner mounted to 
a fixed stand. Figure 3 shows a photo of the measurement 
setup from behind the AUT positioner. The back side of the 
AUT is visible in the upper left corner of the photo and the 
probe is just to the right of the center of the photo. 

 
Figure 3. Measurement setup in SNF chamber. 

�
�����������������	����!�"#$%&'������	�*+��������������
����/���
�6��:����	���������������������<�=�=$����
�����
��
azimuth axis yielding a minimum sphere diameter of 
a�����������<�*+�=���%������
��	�'������
����������	�
����
and the operating frequency, we chose an angular step size of 

3 degrees to ensure we capture a sufficient number of 
spherical wave modes to accurately represent the fields. 

B. Near-Field Measurement Points 

Using the simplifying assumptions described previously 
(a spherical AUT bounding surface and constant - spacing 
between samples), we find the locus of sample points to be 
acquired, shown in Figure 4. These samples were then 
collected in the chamber in continuous motion. Note the AUT 
bounding surface in the figure, depicted in gray, which we 
have chosen to be a sphere. To enable interpolation near the 
poles, we have chosen to collect an additional 10 rings around 
each of the poles, as indicated by the red sample points. 

 
Figure 4. Spiral locus of acquired near-field positions. 

A standard raster of near-field data was also collected so 
that we could compare its transformed data to the far-field 
patterns generated from the spiral data. The set of data points 
collected for this baseline is shown in Figure 5. 

III.�DATA PROCESSING 

In order to process the data, we first modulate the phase 
of the measured data .�,/0 -/� to center the local spatial 
bandwidth at zero by .1�,/0 -/� � .�,/0 -/�(23�45065�� (3) 

where ,/ and -/ represent the sets of angular positions of the 
spiral data points. 

Then OSI interpolation is applied to produce data points 
on the standard SNF grid. This interpolation has the form [3] 

.7�,80 -8� � 9 .1�,/��0 -/�:;<=��,8� � ��,/��0 -/�> +?;@=��,8� � ��,/��0 -/�>
ABCD

AEAB�DC�  (4) 
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Figure 5. Conventional spherical near-field sample positions. 

where ,8 and -8 � -/ are the angular positions of the data 
points on the regular grid, ,/�� is the polar angle of the FG 
point on the meridian curve containing �,80 -8�, H is the 
index of the spiral sample closest to �,80 -8�, I is a free 
variable indicating the width of the interpolation window, :;�+� is a slightly modified form of the JFG-order Dirichlet 
kernel, and ?;�+� is a windowing function composed of 
Chebyshev polynomials of the first kind of degree J. The 
order/degree of these last two functions, JK and JL are free 
variables. Those functions are defined as 

:;��� � MNO P�J & �	� �Q�	J & �� MNO ��	�� (5) 

?;��� �
R; S	� TUM ��	�TUM �IV�	 �!

� � �W
R; S	� �TUM �IV�	 �!

� � �W
� (6) 

 
where V� is the step size between samples along the curve. 

After interpolation, the phase modulation is reversed, i.e. .�=,#0 -#> � .�=,#0 -#>(�X�=,#0-#>� (7) 

and then these data are transformed to the far-field using the 
traditional near-field to far-field transform [18]. Note that in 
the case of a spherical AUT model, � is constant for all 

sample positions on the measurement sphere, so there is no 
need to perform phase modulation, which simplifies the post-
processing slightly. 

For our test, we chose I � �Y, JK � �	Y, and JL � Z. 

IV.�RESULTS 

After processing the collected data, the principal plane 
cuts of the far-field patterns are plotted and compared. In 
Figures 6-9, we show the patterns from the conventional 
acquisition in blue and the patterns from the spiral acquisition 
in red. The normalized error plotted in black is given by 


�,0 -� � �
[�,0 -� � 
\�,0 -��]^_406 �
\�,0 -�� � (8) 

where 
/ and 
\  are the transformed field values of the spiral 
and conventional acquisitions, respectively. The form of this 
equation assumes that the conventional scan is truth, so the 
error curves may be 6dB higher than is warranted. Thus, the 
results offer a conservative estimate of accuracy. 

 
Figure 6. Co-pol far-field patterns vs. Elevation angle 

 
Figure 7. Co-pol far-field patterns vs. Azimuth angle 
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Figure 8. Cross-pol far-field patterns vs. Elevation angle 

 
Figure 9. Cross-pol far-field patterns vs. Azimuth angle 

For this set of data, we found the OSI-based 
reconstruction of the far-field from the spiral near-field 
samples to be quite accurate. Errors levels below -60dB are 
common with peak errors around -55dB in the main beam of 
the azimuth cut. That function, which is the only additional 
required processing compared to the conventional approach, 
took approximately 6.6 seconds to complete a single 
frequency on an Intel i5 processor clocked at 2.4 GHz. 

The errors we see in the area of the main beam appear to 
be due to slight inaccuracies in the positioning system. This 
appears to be driven primarily by the large gear ratio between 
axes leading to slow motion in the theta axis on the order of 
the quantization level of the digital drive circuitry. While the 
errors reported above may be acceptable, this issue has the 
potential to cause problems with other measurement 
configurations and is something we plan to address in a future 
paper. 

As a qualitative assessment of the spiral method, note the 
images of back-projected fields in Figure 10, which shows 
estimates of the magnitude of the aperture illumination 
function using the acquired spiral data. Clear nulls in the field 

strength may be seen near the areas covered by the two pieces 
of copper tape as illustrated in Figure 2. 

 
Figure 10. Aperture Back-Projected Power from Spiral Data 

Compare these results to the estimated aperture field 
strength using the conventional scan, illustrated in Figure 11. 

 
Figure 11. Aperture Back-Projected Power from Conventional 

Data 

While both sets of data yield useful visualizations of the 
aperture function and both show lower energy in the regions 
of the copper tape, the spiral data appears to qualitatively 
introduce some extra residual energy in the region 
surrounding the aperture. 

V.�CONCLUSION 

An initial implementation of spiral scanning in 
continuous motion has been performed along with post-
processing to generate far-field patterns. Accuracy of the 
reconstructed patterns is very good when compared to 
patterns obtained from a regular grid of near-field samples. 

For ease of implementation, two simplifying assumptions 
were made that led to a longer data acquisition time than 
might have been necessary. Future work will involve working 
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through the complexities of implementing a spiral with a goal 
toward minimizing the time required to collect the near-field 
data. This may include 

1.� Allowing for sparsity of sampling along the spiral 
and including the extra step of interpolating along 
that curve 

2.� Alternative AUT bounding surfaces to reduce the 
number of rings in the spiral 

3.� Alternative definitions of a spiral to minimize the 
gear ratio between the two axes of motion 

4.� Alternative interpolation methods to handle alternate 
spiral definitions and/or measured (rather than 
nominal) sample positions 
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