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Abstract— The approach of non-redundant near-field sampling
has been available for many years. A general and automated
approach that yields the expected time reduction for an arbitrary
antenna volume, however, has been elusive. One of the more
practical approaches is the “PNF wide-mesh” sampling, where
the probe grid is separable in x and y, and this approach is the
one explored in this paper.

A fundamental step in non-redundant sampling is to identify a
volume that fully contains the AUT. Constraints imposed by
theory have typically led this volume to be rotationally symmetric
about a z-oriented line, and often also require that the volume be
more spherical (less oblate) than a volume circumscribing the
AUT. That larger volume generally results in more acquisition
time than would a conformal volume, but allows those samples to
be readily interpolated to the conventional half-wavelength PNF
grid. This paper examines the impacts of relaxing those
constraints in order to further reduce the required sampling time
for a box-shaped AUT. It then looks for ways to reduce or
remove those impacts.

The implementation of this algorithm involved a minor
reformulation, specific to the PNF (or linear-axis) geometry, of
the wunderlying non-redundant sampling theory. That
reformulation is briefly described herein. A new family of
tunable AUT-volume edge treatments similar to the existing
“double-bowl” is also described.

The paper will show minor reductions in predicted acquisition
time compared to non-redundant sampling with a circular
double-bowl volume. Each non-redundant approach typically
offers a 40-60% reduction with a rectangular AUT volume
compared to a full conventional scan. A more notable advantage
of the new approach is a significant reduction in preacquisition
activity defining the several parameters that govern the non-
redundant acquisition and processing.

Index Terms— non-redundant,
bandwidth, superellipse, wide-mesh.

PNF, sampling, spatial

L INTRODUCTION

Planar wide-mesh scanning (PWMS) [1] is an approach
that should be applicable to the vast majority of PNF systems
with x-y scanners. When stepping one axis with non-redundant
sampling [2] and scanning the other at full resolution as is
assumed herein, acquisition time (nearly proportional to the
number of scans) is typically cut by 40-60% relative to the
conventional approach with full-resolution steps. Since each
scan samples at a constant increment along the moving axis,

the only unconventional requirement on the acquisition system
is moving the step axis through a prescribed list of positions.

A.  Motivations

We recently investigated using PWMS with a box-shaped
AUT and a small scanner. The virtual addition of a rotationally
symmetric (double-bowl) expansion of the AUT volume
pushed that volume close to the scanner edges, such that the
time savings from PWMS would be minimal. This
investigation sparked an interest in seeing whether or not a
rotationally symmetric volume is truly necessary and/or seeing
if there are ways to mitigate any errors induced by a more
conformal volume.

Another motivation is to increase the understanding and
acceptance of non-redundant sampling, and especially PWMS
because it is so broadly applicable and beneficial. One goal of
this effort is to provide automation of and/or recommendations
for parameter values that balance time savings and fidelity.

B.  Approach

The approach described herein is specific to a box-shaped
AUT. The acquisition will be sparse only along the step axis x,
and the y axis will be conventionally scanned with increments
close to A/2.

Because the set of x positions will be the same for all y,
those x increments must be small enough for use at any y.
Toward that end we need to identify the x-y path with the
worst-case bandwidth w(x, Ymax(x)).

A simulation campaign was undertaken to ensure proper
sampling and reconstruction and to experiment with
controlling-parameter values to gauge their effects on
acquisition time and reconstruction fidelity. Efforts have also
been made to automate and/or recommend parameter values.

C. Outline

Nyquist does not say “thou shalt sample at A/2,” but rather
that “thou shalt sample at a rate higher than the local
bandwidth.” Thus, the notion of spatial bandwidth is core to
the non-redundant approach. Section II offers an alternative
description of spatial bandwidth in the PNF geometry.

PWMS traditionally calls out a rotationally symmetric
fictitious volume surrounding the physical AUT volume. For a
rectangular AUT, that can notably increase the computed
bandwidth and the corresponding number of scans. A primary



goal of this effort was to relax that symmetry requirement
while still achieving adequate fidelity. Section III describes the
form of the replacement “bumper” shape used here.

Section IV describes how the coarse step-axis (x) positions
are computed once the spatial bandwidth has been quantified
per Sections II and III.

Once the data are acquired on the PWMS grid, they need to
be made ready for input to the PNF transform. Section V
describes that interpolation to a regular grid.

Section VI describes a simulation campaign undertaken to
implement, test, and quantify the new approaches herein
described.

II.  SPATIAL BANDWIDTH DESCRIBED FOR A LINEAR AXIS

When sampling in the time domain, it is well known that
the sampling rate must be > the temporal-frequency bandwidth
or aliasing can occur[3]. Similarly, sampling in the spatial
domain must use a sample rate > the spatial-frequency band-
width. What, then, is spatial-frequency bandwidth? And better
yet, how does one quickly understand it without dozens of
equations? We’ll start with a couple simple equations and then
offer examples in what might be more familiar scenarios.

The equation for spatial bandwidth w(x,y,z) [2] (with slight
modification herein) is defined as (1):

w[x,y,z,f)=max(§- t)— min(R e ), (1)

where
(x,y,z) is the probe location,

t is the probe-travel unit vector (always equals & or [1, 0, 0]
in our chosen geometry),

R is the collection of unit vectors from the probe location to
candidate points on the AUT volume, and

Ret = 8¢/5x = Ry/|R| =
has values in the range +1.

KK (stated without proof) and

We see that Ref has multiple equivalent interpretations.
For one dot product with a value within £1, either phase slope
3¢/dx or Ky/K in units of “periods of phase per wavelength
traveled” seems descriptive. However, the difference w
between max and min will be a value between 0 and 2, and
more than one phase period per wavelength is physically
implausible. It seems less confusing to avoid assigning units to
w, and instead think of w as the span of Kx/K.

A. Behavior through the FFT, sample spacing < bandwidth

If time-domain data are sampled at constant interval At in
seconds and passed through an FFT, then the FFT output will
represent a temporal-frequency span or maximum reported
bandwidth in Hz (cycles/second) equal to 1/At.[3].

If spatial-domain data are sampled at constant interval Ax in
linear units and passed through an FFT, then the FFT output

(with each value quantifying the contribution of a particular
phase slope d¢/0x) will represent a spatial-frequency (Kv/K)
span or maximum reported bandwidth w equal to 1/(Ax /L) or
A/Ax. Inverting that relationship, we see that we can sample at a
rate < local bandwidth w by following (2):

A<l Q)

Just as the bandwidth of a time-based signal is defined as
the width of the temporal-frequency spectrum where power is
present, so is the spatial bandwidth defined as the width of the
spatial-frequency spectrum where power is or can be present.

B.  Geometric description

Figure 1. attempts to illustrate the determination of worst-
case spatial bandwidth of the conformal box at three probe
positions (over the aperture, just beyond the aperture, and well
beyond the aperture) using simple dot products[2]. In Figure 1.
the (black) rectangles represent the front (z=0) and back (-z) of
the AUT box, the long (green) line represents probe travel
parallel to x with a (green) dot at the illustrated probe position,
the skinny (red) cone shows first contact with the box expan-
ding outward from behind the probe (min Re t), and the larger
(blue) cone does the same expanding outward from ahead of
the probe (max ROt) Multi-color dots are shown at the two
contact points for each plot. Local bandwidth w(x) is then the
difference between the max and min dot products consistent
with (1).

Figure 1. Min and max dot products

Figure 2. shows with its top trace a typical local spatial
bandwidth w(|x|) for a box-shaped AUT volume. Here we see
the high bandwidth when centered over the aperture, diving
down to unity at the aperture edge, and the slower decay after
the probe starts seeing the back of the AUT as max(R # t). The
discontinuity in the bandwidth’s first derivative is also labeled
and is the reason for artificially expanding the AUT volume as
discussed in Section III.
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Figure 2.  Spatial bandwidth of box shape

In summary, the “spatial bandwidth” of a field to be
sampled along a linear axis is the width, range 0 to 2, of the
spatial-frequency domain Kyx/K where power is possible. Thus
(2) provides a straightforward relationship between spatial
bandwidth and the sample increment. If one is using a fixed
increment at all x, and if the probe passes close to the aperture
center where local bandwidth w is close to 2.0, then that fixed
sample increment should be, per (2), Ax < A/2.

C. Accounting for Probe Y

In PWMS, the same set of x positions will be sampled for
all probe y positions. It is thus important to evaluate bandwidth
w(X, Ymax(x)) as the worst-case locus through the x-y probe
plane, where ymax(x) is the probe-y location at each probe x that
sees the maximum local bandwidth with T = %. (Note that we
continue to use X because subsequent sampling and interpo-
lation will be done along x.) Figure 3. shows conformal w(x,y)
computed for three different AUT-box aspect ratios, with
w(x,y) depicted as colorfill and contours, AUT box as a
magenta rectangle, and + |ymax(x)| as nearly diagonal black on
yellow lines. Figure 3. indicates that if y(x)=0 (where confor-
mal bandwidth is at its minimum) were used to find sample
spacing, then the field along x at nonzero y would be under-
sampled. An early hypothesis was that yma.(x) would be found
along the diagonals ymax(x) = | x |, but Figure 3. shows that to
be true only when the AUT box is a square. The approach
taken here is to tabulate ymax(x) from the 2D conformal
bandwidth and use that later to find the (wider) 1D sampling
bandwidth.

probe y

Figure 3.

Conformal spatial bandwidth vs. x and y
(with T =%)

Figure 2. shows the local spatial bandwidth w(x) when we
follow ymax(x) in that locus. This plot has some features worthy
of note (Figure 1. might be helpful in visualizing these notes):

e Small |x| (probe over aperture center) has w(x) very
close to 2, so the local Nyquist increment is close to
AMw =A2.

e x at the aperture edge has conformal w(x) very close to
1, so the local Nyquist increment is close to A.

e As [x| passes beyond 20 (the edge of our conformal
AUT box), something bad happens. At x=19.999 there
is one distinct forward point of first contact at
Ax=0.001, Ay=0, and Az=probe separation. At
x=20.001, that point of first contact jumps to the far
corner of the x=+20 side, suddenly increasing the |R| in
the maximum dot product Rx/[R|.

The sudden change is ‘bad’ because a discontinuity got
introduced into our w(x) curve’s first derivative, annotated in
Figure 2. We’ll be doing bandlimited interpolation later in the
process, and that requires that our samples be equally spaced
along a bandlimited path. Discontinuities at least in early
derivatives of w(x) tend to unacceptably degrade the approach.
This bad behavior is typically avoided[1][2] by surrounding the
conformal AUT volume with a less-conformal but better-
behaved shape. Section III discusses the less-conformal shape
introduced here.

III. A NEwW AUT-BOUNDING VOLUME

There are multiple competing goals when choosing a
bounding volume:

e Provide a smooth curve w(x) everywhere, especially at
the aperture edge.

e Yield a local-bandwidth curve w(x) that is everywhere
> the conformal curve.

e Yield a w(x) curve that is close to the conformal curve
so that it minimizes the number of samples along x.

The conventional approach [1][2] to this bounding shape is
a rotationally symmetric analytical volume. These have
included spheres, ellipsoids, and double bowls. Figure 4. shows
cross sections of the double bowl[1] (top) and the new bumper

(bottom).
( AUT diagonal )
( AUT diagonal )
Figure 4. Cross sections of double bowl (top) and new

bumper (bottom)

The double bowl’s cross section is rotated through a circle
to form its volume. The new bumper’s extrusion is along the
locus of a superellipse[4], whose equation is (3):

(&) + () =1 o

a is the value of x when z=0,

where



b is the value of z when x=0, and
N is the real-valued order of the superellipse, > 2.0.

Figure 5. shows superellipses orders 2, 3, and 6 (order 2.0
is a regular ellipse) scaled to circumscribe the same rectangular
box. The superellipse was chosen to allow controlled growth of
the new volume away from the conformal box, with the
assumption that excessive growth would increase the band-
width and thus the number of required samples. We see that the
higher orders become more and more conformal (fewer scans)
while still yielding a convex shape, though the derivative
content is becoming large (possible bandwidth expansion).
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Figure 5. Order 2, 3, 6 superellipses circumscribing a box

Figure 6. then shows the elliptical bumper extruded around
a superelliptical path. In this example, the aspect ratio of the
superellipse has been chosen to be different from that of the
box it circumscribes.
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Figure 6. [Illustration of bumper for w(x)

Figure 7. illustrates the loci of min (left) and max (right)
dot products R# X as the probe moves along the quadrant-1
diagonal line (with y(x) chosen to maximize the bandwidth
w(x)). Only the portions of the bumper where initial contact is
possible are shown. Blue dots are shown at those initial-contact
points, and thin lines connect (at coarse intervals) probe
positions and corresponding blue dots. Geometric symmetry is
exploited, reusing the quadrant-1 values to populate the other
three quadrants.
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Figure 7. Loci of dot-product hits on the new bumper

Figure 8. again shows the conformal bandwidth and adds
an overlay of the smoother bandwidth computed with the
bumper, both from the geometry in Figure 7.
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Figure 8.  Spatial bandwidth w(x) with bumper

IV. SAMPLING PER THE SPATIAL BANDWIDTH

A key feature of non-redundant sampling[2] is its recog-
nition that the local spatial bandwidth changes with probe
position and that the local sample increment can be made larger
as local bandwidth w(x) decreases.

When periodically sampling a signal in the time domain,
Nyquist typically requires that the sample rate (in
samples/second) be > the signal’s bandwidth w(?)[3] (in
cycles/second). The same principle applies to spatial sampling,
where the sample rate (in samples/wavelength) must be > the
signal’s local spatial bandwidth w(x).

We are going to use bandlimited interpolation when
processing the sampled data, which benefits greatly from a
constant increment along some bandlimited domain &(x). The
purpose of the virtual edge treatment around the AUT volume
is to limit any bandwidth expansion due to the shape of w(x).
With the conformal box shape, the bandwidth expansion to be
mitigated results from the derivative discontinuity annotated in
Figure 2.

In defining &(x) we are going to integrate sample rate
(bandwidth w(x)) per (4):

_¥f Jwix)
f(xf) - J-U "‘-JJJ;'JJ dx

, 4)

where y is an oversampling factor > 1.0 that causes the
sample rate to be greater than the bandwidth.

Our variable spacing along x will correspond to uniform
spacing along &(x). For simplicity, we choose to scale &(x) to
represent “sample numbers”, and every integer value of &(x)
will correspond to a sample location. Toward that end, we first

define a vector xr of finely spaced x, compute bandwidth w(xy)
per (1), scale by y/A (at max frequency), and integrate per (4)

to get & = E(xp).
The integral in (4) is accomplished via simple summation.
Because vectors & and xy are each ever-increasing, we can

invert and interpolate to obtain the unequally spaced xs
sampling values with (5):

X, = inter'p[nff, Xp 1 émazx )s )

where

Emax = int(max(& (x))), and



Xy contains sample positions at +x with a sample at and odd
symmetry about the aperture center.

Later, during interpolation to the conventional grid, we will
need to know the &oys values for each of the equally spaced
output locations xoys. Those values can be found using (6):

‘f(xaur) = interp(xf!‘f(xf)! Xout)- (6)

V. INTERPOLATION TO CONVENTIONAL GRID

The implementation described herein is sparse only in x,
with conventional scans in y with Ay near A/2. Each row of the
acquired matrix shares the same set of x; sample locations, and
each row needs to be interpolated to the conventional grid for
transformation[2]. The interpolation has three fundamental
stages: geometric phase modulation to center the bandwidth at
zero; bandlimited interpolation along & from integer sample
locations to &(xour); and geometric phase demodulation to undo
the earlier modulation.

A. Phase modulations (the magic that enables non-
redundant sampling)

When defining the x-axis step positions in Section 1V,
Ax(x) was based on local max(8¢/dx) — min(3¢/dx), and that
almost never yields a bandwidth centered at d¢/dx = 0. This
yields Ax >> A/2 outside the aperture bounds, which confuses
the sequence of phase measurements vs. x in a very predictable
way such that measured I and Q cannot be directly interpo-
lated. The theory[2] exploits the predictability of this problem,
applying a phase modulation proportional to the integrated
local slope wy(x) = (max(d¢/0x) + min(6¢/dx))/2 for each
acquired x-y position prior to any interpolation. A corre-
sponding demodulation is applied after interpolation based on
the equally spaced output locations in x and y.

PWMS acquires data on a separable grid of x and y, such
that the spatial bandwidth and its resulting x-axis increments
are appropriate for the worst-case y. That restriction does not
apply to the phase modulations, which can and should be
computed vs. x and y.

The algorithm described herein computes the phase modu-
lations based on a simplified bumper to maximize processing
speed. Using a conformal box for phase yielded (as expected)
reconstruction errors near the aperture edges due to the
derivative discontinuities shown in Figure 2. The simplified
phase bumper, which heavily constrains the locus of dot-
product hits, is illustrated at 5 y positions in Figure 9. The
phase bumper is a single tilted half sine (magnitude = 3D
bumper radius) redefined at each y position to connect min or
max x at the box front (green dot) to the far back corner (blue
dot). The modulating phases are computed from the average of
min and max dot products R # X over x travel[2] at each value
of y. Near-field reconstruction using this phase-modulation
approach yielded a notable reduction in ESSL vs. the initial
conformal approach. The per-acquisition phase-computation
time with this approach was consistently below one second.
Use of the bumper in Figure 7. to compute phase modulations

has not been tried, but was crudely estimated to take several
minutes.
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Figure 9. Illustration of phase bumper for y(x)

B.  Bandlimited interpolation

The equally spaced x positions in the conventional grid will
rarely correspond to the integer values along & where data were
acquired such that interpolation is required. Following the
phase modulation, we have a bandlimited signal (fw(x)/2)
equally spaced at integer values along &. Bandlimited interpo-
lation to & between the samples is done as a phase taper
through the spectral domain[3][2]. That interpolation works
best when the two center samples of the fft’s (or equivalent
summation’s) input straddle the desired output & The number
of measured samples is limited, and windowing[5] of the
interpolation input is required[2], along with windowing
compensation of the interpolation output.

In this implementation the number 2P of samples in each
interpolation dynamically changes with each & position. At the
min and max x positions of the output grid, P equals the
number of guard columns (typically 2). As &(x) passes the next
integer value, P gets incremented by one up to a user-specified
maximum, or reduced by one if there are now fewer than P
samples ahead of the current x.

After the data are interpolated to the conventional grid, the
phase slope that was modulated out at the sample locations is
demodulated back in at the output locations.

C. Spatial filtering

As a final step in estimating the conventionally spaced
samples, the interpolated data are run through a single pass of
the holographic PNF filter[6]. The filter’s most notable impact
was in lowering the near-field ESSL at the aperture edges,
typically by about 5-8 dB.

VI. SIMULATION RESULTS

A. Modeled AUT

A highly unorthodox AUT model (very similar to one used
in testing the holographic PNF filter) was chosen as a
challenging test of non-redundant sampling. One 2D dipole
array steered in azimuth at +70° fills the front (z=0) surface of
the AUT box. A second 2D dipole array steered at -50° fills the
rear surface (z=-12A) of the box. Excitation windows and
randomization are applied to each array to provide a nontrivial
pattern to reconstruct. No mutual coupling or occlusion is
modeled among any of the dipoles. The probe is modeled as
another dipole, and no probe correction is performed. The zero-



elevation pattern (as transformed from the conventional grid
with a cos0 factor) is shown as the Truth trace in Figure 10.

B. Truncation mitigation

Non-redundant sampling generally requires extra “guard
samples” at each end of any sparse row or column to enable
accurate interpolation near those ends. This simulation cam-
paign found that two guard samples at each end were sufficient
provided that those ends were at least 15 wavelengths beyond
the aperture edge.

C. Reconstruction fidelity

Figure 10. shows expected fidelity with a nearly conformal
bumper (order 10.0, radius 0.1A). A conformal volume is
expected to yield best-case time savings and worst-case
fidelity. Scan count (and thus acquisition time) is 69% lower
than the equivalent conventional acquisition. This fidelity
might be sufficient for many applications, but there is certainly
room for improvement. The mean ESSL voltage magnitude for
the one displayed centerline scan is -63 dB.

0 A=1.05, r=0, $=10.00, P=12, pZ=5, x=1.05, 2t=0.0, nx=177/577 => 69%
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Figure 10. FF centerline, volume nearly conformal

Figure 11. shows the same analysis when a much more
relaxed bumper (order 2.0, radius 6A) is specified. The scan
count is 64% less than conventional, though 32 (or 18%) more
scans than in Figure 10. The mean ESSL for the one displayed
centerline scan is -82.9 dB.

A=1.15, r=6, §=2.00, P=12, pZ=5, x=1.05, zt=0.0, nx=209/577 => 64%
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Figure 11. FF centerline, volume nearly double-bowl

The primary trade space is between a low number of y
scans (proportional to acquisition time) and low ESSL. There
are four main algorithm parameters that control the locus
through that trade space: the oversampling factor y, the ellipti-
cal bumper’s radius (typically its minor axis), the order of the
superellipse upon which the elliptical bumper is extruded, and
the axial ratio of the superellipse. Increases in  increase the
bandwidth estimate everywhere, and one goal is to achieve
more targeted control, so x was always set to 1.05 herein. The
optimal axial ratio varies with selected critical angle, and is
automatically set to minimize the number of scans. Thus the
primary parameters are reduced to the bumper radius and order.

Figure 12. quantifies the PWMS results from surrounding
one hypothetical AUT (z depth = 12A4) with each of 10
bumpers. Three ellipse radii (3, 6, and 9A) and three super-
ellipse orders (2, 4, and 6) were modeled, plus the ‘conformal’
bumper from Figure 10. with order 10 and radius 0.1 A. Here
we see trends of azimuth-pattern fidelity improvement with
increased bumper radius and/or decreased superellipse order,
and that higher fidelity generally requires more step positions
or y scans. Findings from this effort are shown in Table L.
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Figure 12. Uncertainty and time vs. order and radius

TABLE L.  SELECTED FINDINGS

Topic or Parameter Finding or Recommendation

Rotational symmetry Not required

Order of superellipse 4.0

Bumper radius Max(3A, Y2 AUT depth in z), same size for w and y

#guard columns 2, provided truncation > 15\ from aperture edges

Superellipse axial ratio | Automatically determined to minimize #scans

Oversample-factor yy* | 1.05 sufficient, <1.00 fails

Probe Z More is better until critical angles > limits

Time savings Slight improvement vs. rotationally symmetric
approach. Percentage grows in either approach as
critical angles get larger.

VII. CONCLUSIONS

PWMS is an approach that should be applicable to the vast
majority of PNF systems with x-y scanners. This paper has
introduced new fictitious AUT volumes that offer additional
advantage for antennas without rotational symmetry. Several
controlling parameters are available, with recommendations
supplied in Table I. for each. This approach is expected to
lower the number of scans by 40-60% vs. conventional
sampling with typically specified critical angles.
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