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Abstract— The approach of non-redundant near-field sampling 

has been available for many years. A general and automated 

approach that yields the expected time reduction for an arbitrary 

antenna volume, however, has been elusive. One of the more 

practical approaches is the “PNF wide-mesh” sampling, where 

the probe grid is separable in x and y, and this approach is the 

one explored in this paper. 

A fundamental step in non-redundant sampling is to identify a 

volume that fully contains the AUT. Constraints imposed by 

theory have typically led this volume to be rotationally symmetric 

about a z-oriented line, and often also require that the volume be 

more spherical (less oblate) than a volume circumscribing the 

AUT. That larger volume generally results in more acquisition 

time than would a conformal volume, but allows those samples to 

be readily interpolated to the conventional half-wavelength PNF 

grid. This paper examines the impacts of relaxing those 

constraints in order to further reduce the required sampling time 

for a box-shaped AUT. It then looks for ways to reduce or 

remove those impacts. 

The implementation of this algorithm involved a minor 

reformulation, specific to the PNF (or linear-axis) geometry, of 

the underlying non-redundant sampling theory. That 

reformulation is briefly described herein. A new family of 

tunable AUT-volume edge treatments similar to the existing 

“double-bowl” is also described. 

The paper will show minor reductions in predicted acquisition 

time compared to non-redundant sampling with a circular 

double-bowl volume. Each non-redundant approach typically 

offers a 40-60% reduction with a rectangular AUT volume 

compared to a full conventional scan. A more notable advantage 

of the new approach is a significant reduction in preacquisition 

activity defining the several parameters that govern the non-

redundant acquisition and processing. 

Index Terms— non-redundant, PNF, sampling, spatial 

bandwidth, superellipse, wide-mesh.  

I. INTRODUCTION 

Planar wide-mesh scanning (PWMS) [1] is an approach 
that should be applicable to the vast majority of PNF systems 
with x-y scanners. When stepping one axis with non-redundant 
sampling [2] and scanning the other at full resolution as is 
assumed herein, acquisition time (nearly proportional to the 
number of scans) is typically cut by 40-60% relative to the 
conventional approach with full-resolution steps. Since each 
scan samples at a constant increment along the moving axis, 

the only unconventional requirement on the acquisition system 
is moving the step axis through a prescribed list of positions.  

A. Motivations 

We recently investigated using PWMS with a box-shaped 
AUT and a small scanner. The virtual addition of a rotationally 
symmetric (double-bowl) expansion of the AUT volume 
pushed that volume close to the scanner edges, such that the 
time savings from PWMS would be minimal. This 
investigation sparked an interest in seeing whether or not a 
rotationally symmetric volume is truly necessary and/or seeing 
if there are ways to mitigate any errors induced by a more 
conformal volume. 

Another motivation is to increase the understanding and 
acceptance of non-redundant sampling, and especially PWMS 
because it is so broadly applicable and beneficial. One goal of 
this effort is to provide automation of and/or recommendations 
for parameter values that balance time savings and fidelity. 

B. Approach  

The approach described herein is specific to a box-shaped 
AUT. The acquisition will be sparse only along the step axis x, 
and the y axis will be conventionally scanned with increments 

close to /2. 

Because the set of x positions will be the same for all y, 
those x increments must be small enough for use at any y. 
Toward that end we need to identify the x-y path with the 
worst-case bandwidth w(x, ymax(x)). 

A simulation campaign was undertaken to ensure proper 
sampling and reconstruction and to experiment with 
controlling-parameter values to gauge their effects on 
acquisition time and reconstruction fidelity. Efforts have also 
been made to automate and/or recommend parameter values. 

C. Outline 

Nyquist does not say “thou shalt sample at /2,” but rather 
that “thou shalt sample at a rate higher than the local 
bandwidth.”  Thus, the notion of spatial bandwidth is core to 
the non-redundant approach. Section II offers an alternative 
description of spatial bandwidth in the PNF geometry. 

PWMS traditionally calls out a rotationally symmetric 
fictitious volume surrounding the physical AUT volume. For a 
rectangular AUT, that can notably increase the computed 
bandwidth and the corresponding number of scans. A primary 



goal of this effort was to relax that symmetry requirement 
while still achieving adequate fidelity. Section III describes the 
form of the replacement “bumper” shape used here. 

Section IV describes how the coarse step-axis (x) positions 
are computed once the spatial bandwidth has been quantified 
per Sections II and III. 

Once the data are acquired on the PWMS grid, they need to 
be made ready for input to the PNF transform. Section V 
describes that interpolation to a regular grid. 

Section VI describes a simulation campaign undertaken to 
implement, test, and quantify the new approaches herein 
described. 

II. SPATIAL BANDWIDTH DESCRIBED FOR A LINEAR AXIS 

When sampling in the time domain, it is well known that 

the sampling rate must be  the temporal-frequency bandwidth 
or aliasing can occur[3]. Similarly, sampling in the spatial 

domain must use a sample rate  the spatial-frequency band-
width. What, then, is spatial-frequency bandwidth? And better 
yet, how does one quickly understand it without dozens of 
equations?  We’ll start with a couple simple equations and then 
offer examples in what might be more familiar scenarios. 

The equation for spatial bandwidth w(x,y,z) [2]  (with slight 
modification herein) is defined as (1): 

 , () 

where 

(x,y,z) is the probe location, 

 is the probe-travel unit vector (always equals  or [1, 0, 0] 
in our chosen geometry), 

 is the collection of unit vectors from the probe location to 
candidate points on the AUT volume, and 

 = /x = Rx/|R| = Kx/K (stated without proof) and 

has values in the range 1. 

We see that  has multiple equivalent interpretations. 

For one dot product with a value within 1, either phase slope 

/x or Kx/K in units of “periods of phase per wavelength 
traveled” seems descriptive. However, the difference w 
between max and min will be a value between 0 and 2, and 
more than one phase period per wavelength is physically 
implausible. It seems less confusing to avoid assigning units to 

w, and instead think of w as the span of Kx/K. 

A. Behavior through the FFT, sample spacing  bandwidth 

If time-domain data are sampled at constant interval t in 
seconds and passed through an FFT, then the FFT output will 
represent a temporal-frequency span or maximum reported 

bandwidth in Hz (cycles/second) equal to 1/t.[3]. 

If spatial-domain data are sampled at constant interval x in 
linear units and passed through an FFT, then the FFT output 

(with each value quantifying the contribution of a particular 

phase slope /x) will represent a spatial-frequency (Kx/K) 

span or maximum reported bandwidth w equal to 1/(x /) or 

/x. Inverting that relationship, we see that we can sample at a 

rate  local bandwidth w by following (2): 

 . () 

Just as the bandwidth of a time-based signal is defined as 
the width of the temporal-frequency spectrum where power is 
present, so is the spatial bandwidth defined as the width of the 
spatial-frequency spectrum where power is or can be present. 

B. Geometric description 

Figure 1. attempts to illustrate the determination of worst-
case spatial bandwidth of the conformal box at three probe 
positions (over the aperture, just beyond the aperture, and well 
beyond the aperture) using simple dot products[2]. In Figure 1. 
the (black) rectangles represent the front (z=0) and back (-z) of 
the AUT box, the long (green) line represents probe travel 
parallel to x with a (green) dot at the illustrated probe position, 
the skinny (red) cone shows first contact with the box expan-
ding outward from behind the probe (min ), and the larger 
(blue) cone does the same expanding outward from ahead of 
the probe (max ). Multi-color dots are shown at the two 

contact points for each plot. Local bandwidth w(x) is then the 
difference between the max and min dot products consistent 
with (1). 

  

Figure 1.  Min and max dot products 

Figure 2. shows with its top trace a typical local spatial 
bandwidth w(|x|) for a box-shaped AUT volume. Here we see 
the high bandwidth when centered over the aperture, diving 
down to unity at the aperture edge, and the slower decay after 
the probe starts seeing the back of the AUT as max( ). The 
discontinuity in the bandwidth’s first derivative is also labeled 
and is the reason for artificially expanding the AUT volume as 
discussed in Section III. 



 

Figure 2.  Spatial bandwidth of box shape 

In summary, the “spatial bandwidth” of a field to be 
sampled along a linear axis is the width, range 0 to 2, of the 

spatial-frequency domain Kx/K where power is possible. Thus 
(2) provides a straightforward relationship between spatial 
bandwidth and the sample increment. If one is using a fixed 
increment at all x, and if the probe passes close to the aperture 
center where local bandwidth w is close to 2.0, then that fixed 

sample increment should be, per (2), x  /2.  

C. Accounting for Probe Y 

In PWMS, the same set of x positions will be sampled for 
all probe y positions. It is thus important to evaluate bandwidth 
w(x, ymax(x)) as the worst-case locus through the x-y probe 
plane, where ymax(x) is the probe-y location at each probe x that 
sees the maximum local bandwidth . (Note that we 
continue to use  because subsequent sampling and interpo-
lation will be done along x.)  Figure 3. shows conformal w(x,y) 
computed for three different AUT-box aspect ratios, with 
w(x,y) depicted as colorfill and contours, AUT box as a 

magenta rectangle, and  |ymax(x)| as nearly diagonal black on 
yellow lines. Figure 3. indicates that if y(x)=0 (where confor-
mal bandwidth is at its minimum) were used to find sample 
spacing, then the field along x at nonzero y would be under-
sampled. An early hypothesis was that ymax(x) would be found 

along the diagonals ymax(x) = | x |, but Figure 3. shows that to 
be true only when the AUT box is a square. The approach 
taken here is to tabulate ymax(x) from the 2D conformal 
bandwidth and use that later to find the (wider) 1D sampling 
bandwidth. 

 

Figure 3.  Conformal spatial bandwidth vs. x and y 

 

Figure 2. shows the local spatial bandwidth w(x) when we 
follow ymax(x) in that locus. This plot has some features worthy 
of note (Figure 1. might be helpful in visualizing these notes): 

• Small |x| (probe over aperture center) has w(x) very 
close to 2, so the local Nyquist increment is close to 

/w  = /2. 

• x at the aperture edge has conformal w(x) very close to 

1, so the local Nyquist increment is close to . 

• As |x| passes beyond 20 (the edge of our conformal 
AUT box), something bad happens. At x=19.999 there 
is one distinct forward point of first contact at 

x=0.001, y=0, and z=probe separation. At 
x=20.001, that point of first contact jumps to the far 
corner of the x=+20 side, suddenly increasing the |R| in 

the maximum dot product Rx/|R|. 

The sudden change is ‘bad’ because a discontinuity got 
introduced into our w(x) curve’s first derivative, annotated in 
Figure 2. We’ll be doing bandlimited interpolation later in the 
process, and that requires that our samples be equally spaced 
along a bandlimited path. Discontinuities at least in early 
derivatives of w(x) tend to unacceptably degrade the approach. 
This bad behavior is typically avoided[1][2] by surrounding the 
conformal AUT volume with a less-conformal but better-
behaved shape. Section III discusses the less-conformal shape 
introduced here. 

III. A NEW AUT-BOUNDING VOLUME 

There are multiple competing goals when choosing a 
bounding volume: 

• Provide a smooth curve w(x) everywhere, especially at 
the aperture edge. 

• Yield a local-bandwidth curve w(x) that is everywhere 

 the conformal curve. 

• Yield a w(x) curve that is close to the conformal curve 
so that it minimizes the number of samples along x. 

The conventional approach [1][2] to this bounding shape is 
a rotationally symmetric analytical volume. These have 
included spheres, ellipsoids, and double bowls. Figure 4. shows 
cross sections of the double bowl[1] (top) and the new bumper 
(bottom). 

 
 

  

Figure 4.  Cross sections of double bowl (top) and new 

bumper (bottom) 

The double bowl’s cross section is rotated through a circle 
to form its volume. The new bumper’s extrusion is along the 
locus of a superellipse[4], whose equation is (3): 

 , () 

where 

a is the value of x when z=0,  



b is the value of z when x=0, and  

N is the real-valued order of the superellipse,  2.0. 

Figure 5. shows superellipses orders 2, 3, and 6 (order 2.0 
is a regular ellipse) scaled to circumscribe the same rectangular 
box. The superellipse was chosen to allow controlled growth of 
the new volume away from the conformal box, with the 
assumption that excessive growth would increase the band-
width and thus the number of required samples. We see that the 
higher orders become more and more conformal (fewer scans) 
while still yielding a convex shape, though the derivative 
content is becoming large (possible bandwidth expansion). 

 

Figure 5.  Order 2, 3, 6 superellipses circumscribing a box 

Figure 6.  then shows the elliptical bumper extruded around 
a superelliptical path. In this example, the aspect ratio of the 
superellipse has been chosen to be different from that of the 
box it circumscribes.  

 

Figure 6.  Illustration of bumper for w(x) 

Figure 7. illustrates the loci of min (left) and max (right) 
dot products  as the probe moves along the quadrant-1 
diagonal line (with y(x) chosen to maximize the bandwidth 
w(x)). Only the portions of the bumper where initial contact is 
possible are shown. Blue dots are shown at those initial-contact 
points, and thin lines connect (at coarse intervals) probe 
positions and corresponding blue dots. Geometric symmetry is 
exploited, reusing the quadrant-1 values to populate the other 
three quadrants. 

 

Figure 7.  Loci of dot-product hits on the new bumper 

Figure 8. again shows the conformal bandwidth and adds 
an overlay of the smoother bandwidth computed with the 
bumper, both from the geometry in Figure 7.  

 

Figure 8.  Spatial bandwidth w(x) with bumper 

IV. SAMPLING PER THE SPATIAL BANDWIDTH 

A key feature of non-redundant sampling[2] is its recog-
nition that the local spatial bandwidth changes with probe 
position and that the local sample increment can be made larger 
as local bandwidth w(x) decreases. 

When periodically sampling a signal in the time domain, 
Nyquist typically requires that the sample rate (in 

samples/second) be  the signal’s bandwidth w(t)[3] (in 
cycles/second). The same principle applies to spatial sampling, 

where the sample rate (in samples/wavelength) must be  the 
signal’s local spatial bandwidth w(x). 

We are going to use bandlimited interpolation when 
processing the sampled data, which benefits greatly from a 

constant increment along some bandlimited domain (x). The 
purpose of the virtual edge treatment around the AUT volume 
is to limit any bandwidth expansion due to the shape of w(x). 
With the conformal box shape, the bandwidth expansion to be 
mitigated results from the derivative discontinuity annotated in 
Figure 2.  

In defining (x) we are going to integrate sample rate 
(bandwidth w(x)) per (4): 

  () 

where  is an oversampling factor > 1.0 that causes the 
sample rate to be greater than the bandwidth. 

Our variable spacing along x will correspond to uniform 

spacing along (x). For simplicity, we choose to scale (x) to 

represent “sample numbers”, and every integer value of (x) 
will correspond to a sample location. Toward that end, we first 

define a vector xf  of finely spaced x, compute bandwidth w(xf) 

per (1), scale by / (at max frequency), and integrate per (4) 

to get f  = (xf).  

The integral in (4) is accomplished via simple summation.  

Because vectors f and xf  are each ever-increasing, we can 

invert and interpolate to obtain the unequally spaced xs 
sampling values with (5): 

  () 

where 

 = int(max( )), and 



xs contains sample positions at +x with a sample at and odd 
symmetry about the aperture center. 

Later, during interpolation to the conventional grid, we will 

need to know the out values for each of the equally spaced 

output locations xout. Those values can be found using (6): 

  () 

V. INTERPOLATION TO CONVENTIONAL GRID 

The implementation described herein is sparse only in x, 

with conventional scans in y with y near /2. Each row of the 

acquired matrix shares the same set of xs sample locations, and 
each row needs to be interpolated to the conventional grid for 
transformation[2]. The interpolation has three fundamental 
stages: geometric phase modulation to center the bandwidth at 

zero; bandlimited interpolation along  from integer sample 

locations to (xout); and geometric phase demodulation to undo 
the earlier modulation. 

A. Phase modulations (the magic that enables non-

redundant sampling) 

When defining the x-axis step positions in Section IV, 

x(x) was based on local max(/x) – min(/x), and that 

almost never yields a bandwidth centered at /x = 0. This 

yields x >> /2 outside the aperture bounds, which confuses 
the sequence of phase measurements vs. x in a very predictable 
way such that measured I and Q cannot be directly interpo-
lated. The theory[2] exploits the predictability of this problem, 
applying a phase modulation proportional to the integrated 

local slope (x) = (max(/x) + min(/x))/2 for each 
acquired x-y position prior to any interpolation. A corre-
sponding demodulation is applied after interpolation based on 
the equally spaced output locations in x and y.   

PWMS acquires data on a separable grid of x and y, such 
that the spatial bandwidth and its resulting x-axis increments 
are appropriate for the worst-case y. That restriction does not 
apply to the phase modulations, which can and should be 
computed vs. x and y. 

The algorithm described herein computes the phase modu-
lations based on a simplified bumper to maximize processing 
speed. Using a conformal box for phase yielded (as expected) 
reconstruction errors near the aperture edges due to the 
derivative discontinuities shown in Figure 2.  The simplified 
phase bumper, which heavily constrains the locus of dot-
product hits, is illustrated at 5 y positions in Figure 9. The 
phase bumper is a single tilted half sine (magnitude = 3D 
bumper radius) redefined at each y position to connect min or 
max x at the box front (green dot) to the far back corner (blue 
dot). The modulating phases are computed from the average of 
min and max dot products  over x travel[2] at each value 
of y. Near-field reconstruction using this phase-modulation 
approach yielded a notable reduction in ESSL vs. the initial 
conformal approach. The per-acquisition phase-computation 
time with this approach was consistently below one second. 
Use of the bumper in Figure 7. to compute phase modulations 

has not been tried, but was crudely estimated to take several 
minutes. 

 

Figure 9.  Illustration of phase bumper for (x) 

B. Bandlimited interpolation 

The equally spaced x positions in the conventional grid will 

rarely correspond to the integer values along  where data were 
acquired such that interpolation is required. Following the 

phase modulation, we have a bandlimited signal (w(x)/2) 

equally spaced at integer values along . Bandlimited interpo-

lation to  between the samples is done as a phase taper 
through the spectral domain[3][2]. That interpolation works 
best when the two center samples of the fft’s (or equivalent 

summation’s) input straddle the desired output . The number 
of measured samples is limited, and windowing[5] of the 
interpolation input is required[2], along with windowing 
compensation of the interpolation output.  

In this implementation the number 2P of samples in each 

interpolation dynamically changes with each  position. At the 
min and max x positions of the output grid, P equals the 

number of guard columns (typically 2). As (x) passes the next 
integer value, P gets incremented by one up to a user-specified 
maximum, or reduced by one if there are now fewer than P 
samples ahead of the current x. 

After the data are interpolated to the conventional grid, the 
phase slope that was modulated out at the sample locations is 
demodulated back in at the output locations. 

C. Spatial filtering 

As a final step in estimating the conventionally spaced 
samples, the interpolated data are run through a single pass of 
the holographic PNF filter[6]. The filter’s most notable impact 
was in lowering the near-field ESSL at the aperture edges, 
typically by about 5-8 dB. 

VI. SIMULATION RESULTS 

A. Modeled AUT 

A highly unorthodox AUT model (very similar to one used 
in testing the holographic PNF filter) was chosen as a 
challenging test of non-redundant sampling. One 2D dipole 

array steered in azimuth at +70 fills the front (z=0) surface of 

the AUT box. A second 2D dipole array steered at -50 fills the 

rear surface (z=-12) of the box. Excitation windows and 
randomization are applied to each array to provide a nontrivial 
pattern to reconstruct. No mutual coupling or occlusion is 
modeled among any of the dipoles. The probe is modeled as 
another dipole, and no probe correction is performed. The zero-



elevation pattern (as transformed from the conventional grid 

with a cos factor) is shown as the Truth trace in Figure 10.  

B. Truncation mitigation 

Non-redundant sampling generally requires extra “guard 
samples” at each end of any sparse row or column to enable 
accurate interpolation near those ends. This simulation cam-
paign found that two guard samples at each end were sufficient 
provided that those ends were at least 15 wavelengths beyond 
the aperture edge.  

C. Reconstruction fidelity 

Figure 10. shows expected fidelity with a nearly conformal 

bumper (order 10.0, radius 0.1). A conformal volume is 
expected to yield best-case time savings and worst-case 
fidelity. Scan count (and thus acquisition time) is 69% lower 
than the equivalent conventional acquisition. This fidelity 
might be sufficient for many applications, but there is certainly 
room for improvement. The mean ESSL voltage magnitude for 
the one displayed centerline scan is -63 dB. 

 

Figure 10.  FF centerline, volume nearly conformal 

Figure 11. shows the same analysis when a much more 

relaxed bumper (order 2.0, radius 6) is specified. The scan 
count is 64% less than conventional, though 32 (or 18%) more 
scans than in Figure 10.  The mean ESSL for the one displayed 
centerline scan is -82.9 dB. 

 

Figure 11.  FF centerline, volume nearly double-bowl 

The primary trade space is between a low number of y 
scans (proportional to acquisition time) and low ESSL. There 
are four main algorithm parameters that control the locus 

through that trade space: the oversampling factor , the ellipti-
cal bumper’s radius (typically its minor axis), the order of the 
superellipse upon which the elliptical bumper is extruded, and 

the axial ratio of the superellipse. Increases in  increase the 
bandwidth estimate everywhere, and one goal is to achieve 

more targeted control, so  was always set to 1.05 herein. The 
optimal axial ratio varies with selected critical angle, and is 
automatically set to minimize the number of scans. Thus the 
primary parameters are reduced to the bumper radius and order.  

Figure 12. quantifies the PWMS results from surrounding 

one hypothetical AUT (z depth = 12) with each of 10 

bumpers. Three ellipse radii (3, 6, and 9) and three super-
ellipse orders (2, 4, and 6) were modeled, plus the ‘conformal’ 

bumper from Figure 10. with order 10 and radius 0.1 . Here 
we see trends of azimuth-pattern fidelity improvement with 
increased bumper radius and/or decreased superellipse order, 
and that higher fidelity generally requires more step positions 
or y scans. Findings from this effort are shown in Table I.  

 

Figure 12.  Uncertainty and time vs. order and radius 

TABLE I.  SELECTED FINDINGS 

Topic or Parameter Finding or Recommendation 

Rotational symmetry Not required 

Order of superellipse 4.0 

Bumper radius Max(3, ½ AUT depth in z), same size for w and  

#guard columns 2, provided truncation > 15 from aperture edges 

Superellipse axial ratio Automatically determined to minimize #scans 

Oversample-factor ’ 1.05 sufficient, < 1.00 fails 

Probe Z More is better until critical angles > limits 

Time savings Slight improvement vs. rotationally symmetric 

approach. Percentage grows in either approach as 
critical angles get larger. 

VII. CONCLUSIONS 

PWMS is an approach that should be applicable to the vast 
majority of PNF systems with x-y scanners. This paper has 
introduced new fictitious AUT volumes that offer additional 
advantage for antennas without rotational symmetry. Several 
controlling parameters are available, with recommendations 
supplied in Table I. for each. This approach is expected to 
lower the number of scans by 40-60% vs. conventional 
sampling with typically specified critical angles. 
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